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Abstract: Clustering the case of non-axis-aligned subspaces and detection of outliers is a major challenge due to the curse of 

dimensionality. To solve this problem, the proposed implementation is extension to traditional clustering and finds subsets of the 

dimensions of a data space .In this project, a probability model is proposed to describe in hidden views and the detection of possible 

selection of relevant views. A projective clustering is proposed for Outlier Detection in High Dimensional Dataset that discovers the 

detection of possible outliers and non-axis–aligned subspaces in a data set and to build a robust initial condition for the clustering 

algorithm it improves the parameters in the connection between L∞ corsets and sensitivity that is made in Lemma and improve 

clustering in the case of non-axis-aligned subspaces and detection of outliers in datasets. The suitability of the proposal demonstrated 

is done with synthetic data set and some widely used real-world data set. 
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I. INTRODUCTION 

DATA clustering has a wide range of applications and has 

been studied extensively in the statistics, data mining, and 

database communities. Many algorithms have been 

proposed in the area of clustering   [1][2]. One popular 

group of such algorithms, the model-based methods, has 

sparked wide interest becauseof their additional 

advantages, which give them the capacity to describe the 

underlying structures of populations in the     data [6]. 
 

In the model-based method the data are 

originated from the various sources [9] and that data are 

modeled by the Gaussian mixture. The aim is to find the 

mixture of Gaussians that is nature of the Gaussian source. 

However, such methods would suffer from the curse of 

dimensionality problem for high dimensional data. The 

goal of the clustering is to group the data based on the 

relations between the data. The grouped data is fetched 

through the projective clustering method which fetches the 

related data from different cluster groups. Projective 

clustering is a class of problems in which the input 

consists of high-dimensional data, and the goal is to 

discover those subsets of the input that are strongly 

correlated in subspaces of the original space. Each subset 

of correlated points, together with its associated subspace, 

defines a projective cluste[1]r. Thus, although all cluster 

points are close to each other when projected on the 

associated subspace, they may be spread out in the full-

dimensional space. This makes projective clustering 

algorithms particularly useful when mining or indexing 

datasets. 

Outlier Detection 

The outlier detection is the process of detecting 

the unclustered data from the dataset. The data [7] in the 

dataset is clustered according to the relations between the 

data in the dataset. The data present in the dataset that 

cannot be grouped according to the relations is identified 

as outliers [8]. 

 

II. RELATED STUDIES 

Basic Concepts of Subspace Clustering 

A subspace clustering is a collection of subspace 

clusters. The first2 subspace clustering algorithm CLIQUE 

was published in 1998 and was soon followed by many 

related methods [3]. The algorithms have been applied for 

instance to clustering gene expression data: it is often the 

case that a group of genes behaves similarly only in a 

subset of experiments (i.e. in a subspace0 [10]. Reviews of 

some of the existing subspace clustering algorithms can be 

found. Other names that have been used for the same or a 

closelyIn high dimensional spaces1, traditional clustering 

methods suffer from the curse of dimensionality, which is 

why their application is often preceded by feature 

selection and extraction.  

For instance, a practitioner might apply Principal 

Component Analysis (PCA) to project the data onto a low-

dimensional subspace before trying to cluster the data 

points. However, it is sometimes unrealistic to assume that 

all clusters of points lie in the same subspace of the data 
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space. Subspace clustering methods address this issue by 

assigning a distinct subspace to each group of data points. 

Before proceeding, let us introduce our notation. 

The data matrix X consists of elements xij 2 R, where i 2 

{1, 2, . . . ,m} and j 2 {1, 2, . . . , p}. We denote the m 

rows by {r1, r2, . . . , rm}, where ri = (xi1, xi2, . . . , xip), 

and the p columns by {c1, c2, . . . , cp}, where ci = (x1i, 

x2i, . . . , xmi)T . We will often refer to the rows as data 

points and to the columns as attributes. A clus- ter Ci _ 

{r1, r2, . . . , rm} is a subset of the data points. A 

clustering2 C is a partitioning of the set of m data points 

into clusters C1,C2, . . . ,CK of sizes m1,m2, . . . ,mK. 

 

III. NON-AXIS-ALIGNED SUBSPACE 

CLUSTERINGS 

A non-axis-aligned subspace cluster S is a pair 

(R,W), where R _ {r1, r2, . . . , rm} is a subset of the rows 

and W is a collection of vectors {w1,w2, . . . ,wD}, where 

wi 2 Rp. The vectors in W form a basis for an arbitrary 

subspace of the original p-dimensional data space. We use 

W also to denote this subspace. Naturally, an axis-aligned 

subspace cluster is a special case of a non-axis aligned 

subspace cluster.  In the case of an axis-aligned subspace 

cluster, W is a subset of the original basis vectors {e1, e2, 

. . . , ep}, where e1 = (1 0 0 . . . 0),e2 = (0 1 0 0 . . . 0), etc. 

A non-axis-aligned subspace clustering S is a 

collection {S1, S2, . . . , SK} of K non-axis aligned 

subspace clusters. The algorithms ORCLUS, KSM , and 

4C produce these kinds of clustering. Non-axis-aligned 

subspace clustering is a generalization of feature 

extraction; instead of defining a single set of features for 

the whole data. 

Meta-Clustering 

Meta-clustering refers to investigating the 

structure of a set of clustering. Meta-clustering discards 

the idea of trying to derive a single good clustering for a 

data set; instead, it is acknowledged that the data can be 

well represented in several different, complementary 

ways. For instance, assume that a given data set has been 

clustered several times by different algorithms. A meta 

clustered might now observe that these clustering form 

two tight groups of clustering, and give the user a 

representative of each of these groups, instead of a single 

’best’ clustering.  

There are various ways to produce different 

clustering for a data set: we could use different algorithms, 

a single algorithm with various parameter values and 

initializations, change metrics, use various dimensionality 

reduction schemes, or sample the data. Meta-clustering 

may be used to investigate whether some of these 

clustering form tight groups, whether some of the 

clustering are outliers, whether the effect of the parameter 

values is strong or weak, etc. For instance, it has been 

empirically shown by means of meta clustering that only a 

small number of clustering algorithms is enough to 

represent a large number of clustering criteria. 

 

IV. A NEAR-LINEAR ALGORITHM FOR 

PROJECTIVE CLUSTERING INTEGER POINTS 
 A near-linear algorithm for integer (j; k) 

projective clustering in the L1 sense when the dimension 

is part of the input. Recall that in this problem we are 

given a set P of n points in Rm and integers j _ 1, k _ 0, 

and the goal is to find j k-subspaces so that the sum of the 

distances of each point in P to the nearest subspace is 

minimized; the point coordinates are integers of 

magnitude polynomial in m and n. Our randomized 

algorithm , for any parameter " > 0, runs in time O(mn 

polylog(mn)) and outputs a solution that with constant 

probability is within (1 + ") of the optimal solution. 

A. Probability Model 

It is important to note that the Gaussian mixture 

is a fundamental hypothesis that many model-based 

clustering algorithms make regarding the data distribution 

model. In this case, data points are thought of as 

originating from various possible sources, and the data 

from each particular source is modeled by a Gaussian.  

B. Chenet al.: model-based method for  projective 

clustering 

 

 

 

 

 

Fig.1.Model-based method for projective clustering 

Changes in probability density with different weighting 

values 

C. j-flat Fitting Using Lemma Concepts: 

In this section, we consider the j-at fitting 

problem. We first introduce the concept of shape kernel 

and then use it to derive PTAS for the j-at fitting problem. 

To solve the j-at setting problem, one way is to use the 

concept of kernel set introduced by Agarwal et al. in. For a 

set P of Rd points, its kernel set is a new set of Rd points 

of size O (1 (__)(d�1)=2 ) which can be constructed 

through an _-net inside a unit sphere, where _ is a measure 

of the fatness of P. Kernel set captures the structure and 

extent of P and is rather powerful for solving many 

problems. Despite the obvious advantages provided by 

kernel set, there are also some issues when used for 

solving the RPC problem, which leads us to adopt a 

different structure called shape kernel. One issue is that 

the value of _ could be large for some point sets.  

Although as pointed out in [1], it can be reduced by using 

some linear transform on the point set. However, this 

seems to be difficult to extend to the case of k _ 2 (i.e., 

multiple j-ats as in the RPC problem), as there may not 

exist a single linear transform for all j-ats. Another issue is 
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that kernel set maintains more than succinct information 

for RPC. For RPC, it is actually succinct to maintain a 

small set of points which jointly approximate the mean of 

the original point set. One consequence of the redundant 

information in the kernel set is that its size could still be 

relatively large, making it di_cult to further improve the 

total running time of kernel set based algorithms. To 

resolve the aforementioned issues, we use a different 

strategy to construct the kernel.  

V. AVERAGE VPC OF THE THREE FUZZY 

CLUSTERING ALGORITHMS 

 

Average FScore of the algorithms, with 

increment of variances on the relevant dimensions 

algorithms choose their initial cluster centers via some 

random selection methods, and thus the clustering results 

may vary depending on the initialization. Figs. 3 and 4 

show the average results of the algorithms on these data 

sets, in terms of VPC and FScore, respectively. Detailed 

clustering results on the data set with s ¼ 8, which is the 

most difficult case of the seven data sets (as shown in 

Table 2), are illustrated in Table 3. The values in the max 

columns correspond to the best results of the algorithms, 

and the average results are reported in the format average 

_ 1 standard deviation in the table. Figs. 3 and 4 show that 

outlier is able to achieve high quality overall results, 

especially when the clusters overlap considerably, whereas 

FCM, Fuzzy-FWKM, and EWKM perform poorly, and the 

other algorithms encounter difficulties when the cluster 

overlapping becomes significant, i.e., when s > 6. 

Examining these results in more detail, we can see that the 

values of VPC yielded by FCM and Fuzzy-FWKM are 

close to 1 K , which indicates that these two algorithms 

tend to assign each point to all the clusters with 

approximately equal membership degrees. This is due to 

the fact that FCM measures the similarity between data 

points by considering all features of a data set. With the 

high-dimensional data used in the experiments, such a 

similarity measurement in the entire data space would be 

less meaningful due to the empty space phenomenon . 

Fuzzy-FWKM employs a feature weighting mechanism in 

the clustering process; however, each dimension is 

assigned the same weight for different clusters in this 

algorithm.  

 

 
 

Fig 2. Average vpc of the three fuzzy clustering 

algorithms 

Our result is a near-linear algorithm for integer (j; 

k) projective clustering in the L1 sense when the 

dimension is part of the input. Recall that in this problem 

we are given a set P of n points in Rm and integers j _ 1, k 

_ 0, and the goal is to find j k-subspaces so that the sum of 

the distances of each point in P to the nearest subspace is 

minimized; the point coordinates are integers of 

magnitude polynomial in m and n. Our randomized 

algorithm, for any parameter "  > 0, runs in time O(mn 

polylog(mn)) and outputs a solution that with constant 

probability is within (1 + ") of the optimal solution. To 

obtain this result, we observe that in a fairly general sense, 

shape setting problems that have small core sets in the L1 

setting also have small corsets in the L1 setting. Using this 

observation, and the corset construction of for the L1 

setting in axed dimension, we are able to obtain a small 

core set for the L1 setting in axed dimension. To solve the 

problem when the dimension is part of the input, we use a 

known dimension reduction result. 

 

VI. PROPOSED METHOD 

 

The detection of outliers in the high dimensional 

dataset is major challenge because of its dimensionality. 

To solve this problem, the proposed implementation is 

extension to traditional clustering and finds subsets of the 

dimensions of a data space .In this project, a probability 

model is proposed to describe in hidden views and the 

detection of possible selection of relevant views. 

 In this paper, we first discussed the problem of 

providing a probability model to describe projected 

clusters in high dimensional data. The experiments were 

conducted on cancer datasets, airline datasets which used 

in real-world applications and the results show the 

effectiveness of outlier. 

There are many directions that are clearly of 

interest for future exploration. One avenue of further study 

is to extend outlier to the case of non-axis-aligned 

subspaces. Another interesting extension would be for the 

detection of possible outliers and the subspaces of the low 

dimensional data in a data set. Our future efforts will also 

be directed toward developing techniques to build a robust 

initial condition for the clustering algorithm. 

 

Experimental Results 

 

The algorithms are implemented to detect the 

Outlier and subspace dimensionality of the low 

dimensional data in the cancer and airline dataset.  

The Fuzzy-FWKM is not a projective clustering 

algorithm which employs the weighting mechanism in 

which each dimension is assigned same for different 

clusters. The graphs were drawn to find out the 

effectiveness of the outlier detection and subspace 

clustering in the concert. The graph compares the two 

fields in the dataset and shows the comparison result of the 

dataset. 
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Fig 3. Comparison of Mean area vs. ID 

The rate of the mean varies from one ID to another ID and 

the result of the comparison is shown as a graph. The 

cancer dataset consist of values in it and the graph is 

drawn according to that graph. In the cancer dataset the ID 

and the mean values are compared, the values of the graph 

are listed according to the values in the dataset. The every 

field in the dataset is compared and the graph can be 

drawn according to their values in it. 

VII. CONCLUSION 

In this paper, we first discussed the problem of 

providing a probability model to describe projected 

clusters in high dimensional data. This problem becomes 

difficult due to the sparsity of high-dimensional data and 

the fact that only a small number of the dimensions may 

be considered in the clustering process. In this model 

method to detect the outliers that exist in the database 

without the data clustering will be detected.  

The subspace clustering finds the low 

dimensional data in the clustered data set that has been 

used in our experiment. The result of the Cancer data set 

will result in both the outlier detection and subspace 

clustering of the data in the database. The Gaussian model 

that satisfies all the criteria that is accepted by the 

projective clustering. The experiments show that outlier is 

suitable for clustering real-world data especially for e-mail 

documents. To confirm the suitability of our algorithm for 

document clustering, the capability of outlier in 

identifying the keywords of document categories is 

analyzed below. From the subspaces of resulting clusters, 

we can obtain the relevant dimensions that represent 

important keywords by sorting the dimension weights in 

descending order. 
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